Skip to main content

Implementation Guide

Not availableCloud Not availableSelf-Managed Community (OSS)AvailableSelf-Managed Enterprise

Airbyte Self-Managed Enterprise is in an early access stage for select priority users. Once you are qualified for a Self-Managed Enterprise license key, you can deploy Airbyte with the following instructions.

Airbyte Self-Managed Enterprise must be deployed using Kubernetes. This is to enable Airbyte's best performance and scale. The core Airbyte components (server, webapp, workload-launcher) run as deployments. The workload-launcher is responsible for managing connector-related pods (check, discover, read, write, orchestrator).

Prerequisites

Infrastructure Prerequisites

For a production-ready deployment of Self-Managed Enterprise, various infrastructure components are required. We recommend deploying to Amazon EKS or Google Kubernetes Engine. The following diagram illustrates a typical Airbyte deployment running on AWS:

AWS Architecture Diagram

Prior to deploying Self-Managed Enterprise, we recommend having each of the following infrastructure components ready to go. When possible, it's easiest to have all components running in the same VPC. The provided recommendations are for customers deploying to AWS:

ComponentRecommendation
Kubernetes ClusterAmazon EKS cluster running on EC2 instances in 2 or more availability zones on a minimum of 6 nodes.
IngressAmazon ALB and a URL for users to access the Airbyte UI or make API requests.
Object StorageAmazon S3 bucket with two directories for log and state storage.
Dedicated DatabaseAmazon RDS Postgres with at least one read replica.
External Secrets ManagerAmazon Secrets Manager for storing connector secrets.

A few notes on Kubernetes cluster provisioning for Airbyte Self-Managed Enterprise:

  • We support Amazon Elastic Kubernetes Service (EKS) on EC2 or Google Kubernetes Engine (GKE) on Google Compute Engine (GCE). Improved support for Azure Kubernetes Service (AKS) is coming soon.
  • We recommend running Airbyte on memory-optimized instances, such as M7i / M7g instance types.
  • While we support GKE Autopilot, we do not support Amazon EKS on Fargate.
  • We recommend running Airbyte on instances with at least 2 cores and 8 gigabytes of RAM.

We require you to install and configure the following Kubernetes tooling:

  1. Install helm by following these instructions
  2. Install kubectl by following these instructions.
  3. Configure kubectl to connect to your cluster by using kubectl use-context my-cluster-name:
Configure kubectl to connect to your cluster
  1. Configure your AWS CLI to connect to your project.
  2. Install eksctl.
  3. Run eksctl utils write-kubeconfig --cluster=$CLUSTER_NAME to make the context available to kubectl.
  4. Use kubectl config get-contexts to show the available contexts.
  5. Run kubectl config use-context $EKS_CONTEXT to access the cluster with kubectl.

We also require you to create a Kubernetes namespace for your Airbyte deployment:

kubectl create namespace airbyte

Configure Kubernetes Secrets

Sensitive credentials such as AWS access keys are required to be made available in Kubernetes Secrets during deployment. The Kubernetes secret store and secret keys are referenced in your values.yaml file. Ensure all required secrets are configured before deploying Airbyte Self-Managed Enterprise.

You may apply your Kubernetes secrets by applying the example manifests below to your cluster, or using kubectl directly. If your Kubernetes cluster already has permissions to make requests to an external entity via an instance profile, credentials are not required. For example, if your Amazon EKS cluster has been assigned a sufficient AWS IAM role to make requests to AWS S3, you do not need to specify access keys.

Creating a Kubernetes Secret

While you can set the name of the secret to whatever you prefer, you will need to set that name in various places in your values.yaml file. For this reason we suggest that you keep the name of airbyte-config-secrets unless you have a reason to change it.

airbyte-config-secrets
apiVersion: v1
kind: Secret
metadata:
name: airbyte-config-secrets
type: Opaque
stringData:
# Enterprise License Key
license-key: ## e.g. xxxxx.yyyyy.zzzzz

# Database Secrets
database-host: ## e.g. database.internal
database-port: ## e.g. 5432
database-name: ## e.g. airbyte
database-user: ## e.g. airbyte
database-password: ## e.g. password

# Instance Admin
instance-admin-email: ## e.g. admin@company.example
instance-admin-password: ## e.g. password

# SSO OIDC Credentials
client-id: ## e.g. e83bbc57-1991-417f-8203-3affb47636cf
client-secret: ## e.g. wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

# AWS S3 Secrets
s3-access-key-id: ## e.g. AKIAIOSFODNN7EXAMPLE
s3-secret-access-key: ## e.g. wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

# Azure Blob Storage Secrets
azure-blob-store-connection-string: ## DefaultEndpointsProtocol=https;AccountName=azureintegration;AccountKey=wJalrXUtnFEMI/wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY/wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY==;EndpointSuffix=core.windows.net

# AWS Secret Manager
aws-secret-manager-access-key-id: ## e.g. AKIAIOSFODNN7EXAMPLE
aws-secret-manager-secret-access-key: ## e.g. wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

# Azure Secret Manager
azure-key-vault-client-id: ## 3fc863e9-4740-4871-bdd4-456903a04d4e
azure-key-vault-client-secret: ## KWP6egqixiQeQoKqFZuZq2weRbYoVxMH

You can also use kubectl to create the secret directly from the CLI:

kubectl create secret generic airbyte-config-secrets \
--from-literal=license-key='' \
--from-literal=database-host='' \
--from-literal=database-port='' \
--from-literal=database-name='' \
--from-literal=database-user='' \
--from-literal=database-password='' \
--from-literal=instance-admin-email='' \
--from-literal=instance-admin-password='' \
--from-literal=s3-access-key-id='' \
--from-literal=s3-secret-access-key='' \
--from-literal=aws-secret-manager-access-key-id='' \
--from-literal=aws-secret-manager-secret-access-key='' \
--namespace airbyte

Installation Steps

Step 1: Add Airbyte Helm Repository

Follow these instructions to add the Airbyte helm repository:

  1. Run helm repo add airbyte https://airbytehq.github.io/helm-charts, where airbyte is the name of the repository that will be indexed locally.
  2. Perform the repo indexing process, and ensure your helm repository is up-to-date by running helm repo update.
  3. You can then browse all charts uploaded to your repository by running helm search repo airbyte.

Step 2: Configure your Deployment

  1. Inside your airbyte directory, create an empty values.yaml file.

  2. Paste the following into your newly created values.yaml file. This is required to deploy Airbyte Self-Managed Enterprise:

global:
edition: enterprise
  1. To enable SSO authentication, add instance admin details SSO auth details to your values.yaml file, under global. See the following guide on how to collect this information for various IDPs, such as Okta and Azure Entra ID.
auth:
instanceAdmin:
firstName: ## First name of admin user.
lastName: ## Last name of admin user.
identityProvider:
type: oidc
secretName: airbyte-config-secrets ## Name of your Kubernetes secret.
oidc:
domain: ## e.g. company.example
appName: ## e.g. airbyte
display-name: ## e.g. Company SSO - optional, falls back to appName if not provided
clientIdSecretKey: client-id
clientSecretSecretKey: client-secret
  1. You must configure the public facing URL of your Airbyte instance to your values.yaml file, under global:
airbyteUrl: # e.g. https://airbyte.company.example
  1. Verify the configuration of your values.yml so far. Ensure license-key, instance-admin-email and instance-admin-password are all available via Kubernetes Secrets (configured in prerequisites). It should appear as follows:
Sample initial values.yml file
global:
edition: enterprise
airbyteUrl: # e.g. https://airbyte.company.example
auth:
instanceAdmin:
firstName: ## First name of admin user.
lastName: ## Last name of admin user.
identityProvider:
type: oidc
secretName: airbyte-config-secrets ## Name of your Kubernetes secret.
oidc:
domain: ## e.g. company.example
appName: ## e.g. airbyte
display-name: ## e.g. Company SSO - optional, falls back to appName if not provided
clientIdSecretKey: client-id
clientSecretSecretKey: client-secret

The following subsections help you customize your deployment to use an external database, log storage, dedicated ingress, and more. To skip this and deploy a minimal, local version of Self-Managed Enterprise, jump to Step 3.

Configuring the Airbyte Database

For Self-Managed Enterprise deployments, we recommend using a dedicated database instance for better reliability, and backups (such as AWS RDS or GCP Cloud SQL) instead of the default internal Postgres database (airbyte/db) that Airbyte spins up within the Kubernetes cluster.

We assume in the following that you've already configured a Postgres instance:

External database setup steps

Add external database details to your values.yaml file. This disables the default internal Postgres database (airbyte/db), and configures the external Postgres database. You can override all of the values below by setting them in the airbyte-config-secrets or set them directly here. You must set the database password in the airbyte-config-secrets. Here is an example configuration:

postgresql:
enabled: false

global:
database:
# -- Secret name where database credentials are stored
secretName: "" # e.g. "airbyte-config-secrets"

# -- The database host
host: ""
# -- The key within `secretName` where host is stored
#hostSecretKey: "" # e.g. "database-host"

# -- The database port
port: ""
# -- The key within `secretName` where port is stored
#portSecretKey: "" # e.g. "database-port"

# -- The database name
database: ""
# -- The key within `secretName` where the database name is stored
#databaseSecretKey: "" # e.g. "database-name"

# -- The database user
user: "" # -- The key within `secretName` where the user is stored
#userSecretKey: "" # e.g. "database-user"

# -- The key within `secretName` where password is stored
passwordSecretKey: "" # e.g."database-password"

Configuring External Logging

For Self-Managed Enterprise deployments, we recommend spinning up standalone log storage for additional reliability using tools such as S3 and GCS instead of against using the default internal Minio storage (airbyte/minio). It's then a common practice to configure additional log forwarding from external log storage into your observability tool.

External log storage setup steps

Add external log storage details to your values.yaml file. This disables the default internal Minio instance (airbyte/minio), and configures the external log database:

Ensure you've already created a Kubernetes secret containing both your S3 access key ID, and secret access key. By default, secrets are expected in the airbyte-config-secrets Kubernetes secret, under the aws-s3-access-key-id and aws-s3-secret-access-key keys. Steps to configure these are in the above prerequisites.

global:
storage:
type: "S3"
storageSecretName: airbyte-config-secrets # Name of your Kubernetes secret.
bucket: ## S3 bucket names that you've created. We recommend storing the following all in one bucket.
log: airbyte-bucket
state: airbyte-bucket
workloadOutput: airbyte-bucket
s3:
region: "" ## e.g. us-east-1
authenticationType: credentials ## Use "credentials" or "instanceProfile"

Set authenticationType to instanceProfile if the compute infrastructure running Airbyte has pre-existing permissions (e.g. IAM role) to read and write from the appropriate buckets.

Configuring External Connector Secret Management

Airbyte's default behavior is to store encrypted connector secrets on your cluster as Kubernetes secrets. You may optionally opt to instead store connector secrets in an external secret manager such as AWS Secrets Manager, Google Secrets Manager or Hashicorp Vault. Upon creating a new connector, secrets (e.g. OAuth tokens, database passwords) will be written to, then read from the configured secrets manager.

Configuring external connector secret management

Modifing the configuration of connector secret storage will cause all existing connectors to fail. You will need to recreate these connectors to ensure they are reading from the appropriate secret store.

If authenticating with credentials, ensure you've already created a Kubernetes secret containing both your AWS Secrets Manager access key ID, and secret access key. By default, secrets are expected in the airbyte-config-secrets Kubernetes secret, under the aws-secret-manager-access-key-id and aws-secret-manager-secret-access-key keys. Steps to configure these are in the above prerequisites.

secretsManager:
type: awsSecretManager
awsSecretManager:
region: <aws-region>
authenticationType: credentials ## Use "credentials" or "instanceProfile"
tags: ## Optional - You may add tags to new secrets created by Airbyte.
- key: ## e.g. team
value: ## e.g. deployments
- key: business-unit
value: engineering
kms: ## Optional - ARN for KMS Decryption.

Set authenticationType to instanceProfile if the compute infrastructure running Airbyte has pre-existing permissions (e.g. IAM role) to read and write from AWS Secrets Manager.

To decrypt secrets in the secret manager with AWS KMS, configure the kms field, and ensure your Kubernetes cluster has pre-existing permissions to read and decrypt secrets.

Configuring Ingress

To access the Airbyte UI, you will need to manually attach an ingress configuration to your deployment. The following is a skimmed down definition of an ingress resource you could use for Self-Managed Enterprise:

Ingress configuration setup steps
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: # ingress name, example: enterprise-demo
annotations:
ingress.kubernetes.io/ssl-redirect: "false"
spec:
ingressClassName: nginx
rules:
- host: # host, example: enterprise-demo.airbyte.com
http:
paths:
- backend:
service:
# format is ${RELEASE_NAME}-airbyte-webapp-svc
name: airbyte-enterprise-airbyte-webapp-svc
port:
number: 80 # service port, example: 8080
path: /
pathType: Prefix
- backend:
service:
# format is ${RELEASE_NAME}-airbyte-keycloak-svc
name: airbyte-enterprise-airbyte-keycloak-svc
port:
number: 8180
path: /auth
pathType: Prefix

Once this is complete, ensure that the value of the webapp-url field in your values.yaml is configured to match the ingress URL.

You may configure ingress using a load balancer or an API Gateway. We do not currently support most service meshes (such as Istio). If you are having networking issues after fully deploying Airbyte, please verify that firewalls or lacking permissions are not interfering with pod-pod communication. Please also verify that deployed pods have the right permissions to make requests to your external database.

Step 3: Deploy Self-Managed Enterprise

Install Airbyte Self-Managed Enterprise on helm using the following command:

helm install \
--namespace airbyte \
--values ./values.yaml \
airbyte-enterprise \
airbyte/airbyte

To uninstall Self-Managed Enterprise, run helm uninstall airbyte-enterprise.

Updating Self-Managed Enterprise

Upgrade Airbyte Self-Managed Enterprise by:

  1. Running helm repo update. This pulls an up-to-date version of our helm charts, which is tied to a version of the Airbyte platform.
  2. Re-installing Airbyte Self-Managed Enterprise:
helm upgrade \
--namespace airbyte \
--values ./values.yaml \
--install airbyte-enterprise \
airbyte/airbyte

Customizing your Deployment

In order to customize your deployment, you need to create an additional values.yaml file in your airbyte directory, and populate it with configuration override values. A thorough values.yaml example including many configurations can be located in charts/airbyte folder of the Airbyte repository.

After specifying your own configuration, run the following command:

helm upgrade \
--namespace airbyte \
--values ./values.yaml \
--install airbyte-enterprise \
airbyte/airbyte

Customizing your Service Account

You may choose to use your own service account instead of the Airbyte default, airbyte-sa. This may allow for better audit trails and resource management specific to your organizational policies and requirements.

To do this, add the following to your values.yaml:

serviceAccount:
name:

AWS Policies Appendix

Ensure your access key is tied to an IAM user or you are using a Role with the following policies.

AWS S3 Policy

The following policies, allow the cluster to communicate with S3 storage

{
"Version": "2012-10-17",
"Statement":
[
{ "Effect": "Allow", "Action": "s3:ListAllMyBuckets", "Resource": "*" },
{
"Effect": "Allow",
"Action": ["s3:ListBucket", "s3:GetBucketLocation"],
"Resource": "arn:aws:s3:::YOUR-S3-BUCKET-NAME"
},
{
"Effect": "Allow",
"Action":
[
"s3:PutObject",
"s3:PutObjectAcl",
"s3:GetObject",
"s3:GetObjectAcl",
"s3:DeleteObject"
],
"Resource": "arn:aws:s3:::YOUR-S3-BUCKET-NAME/*"
}
]
}

AWS Secret Manager Policy

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"secretsmanager:GetSecretValue",
"secretsmanager:CreateSecret",
"secretsmanager:ListSecrets",
"secretsmanager:DescribeSecret",
"secretsmanager:TagResource",
"secretsmanager:UpdateSecret"
],
"Resource": [
"*"
],
"Condition": {
"ForAllValues:StringEquals": {
"secretsmanager:ResourceTag/AirbyteManaged": "true"
}
}
}
]
}